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1. Introduction

Conver Nonlinear Programming problems are all
alike; every nonconver problem is difficult in its own
way. I am not the first numerical analyst to borrow
the most quoted line of Anna Karenina to highlight
the difficulties of non-linearity or non-convexity{l] It
could be argued that convex problems are not re-
ally “all alike”, but happy families are not either,
therefore both the famous first sentence of Tolstoi’s
novel and its mathematical corrupted version evoke
the way in which diversity of obstacles increases, as
far as landscapes become more complex.

Practical optimizers face this dilemma when they
need to evaluate nonlinear optimization algorithms.
“Normal” theory, based on the behavior of bounded
subsequences and on local convergence rates, is not
enough to predict efficiency and reliability of a
method. As a consequence, many “plausibility” ar-
guments are many times invoked to justify the in-
troduction of new ideas. For example, as in a golf

! Professor Teodor Atanackovié¢, from Novi Sad, uses to
begin his talks with a variation of Tolstoi’s statement “Happy
families are all alike; every unhappy family is unhappy in its
own way”.



game, large steps should be taken far from the solu-
tion (of course, if we approximately know the correct
direction).

Ultimately, Nonlinear Programming algorithms
need to be tested. Numerical testing is unavoid-
able in two different senses. On one hand, testing
is needed in the process of development of meth-
ods, in order to find and evaluate new algorithmic
procedures. Clever examples are the most power-
ful motivators of useful algorithmic ideas. On the
other hand, a reasonably broad set of test problems
is needed to corroborate hypotheses on the quality
of the algorithm. Collections of problems are also
used for comparison purposes.

Roughly speaking, we may distinguish between
“Toy Problems” and “Real-life Problems”. The min-
imization of the banana-like Rosenbrock’s function
is the most famous toy problem. This problem
was used since the sixties to test the ability of un-
constrained minimization solvers to follow efficiently
long narrow valleys along their trajectory to the min-
imizer. Being a problem with only two variables, the
level sets of Rosenbrock’s banana are well known,
and the problem has been very useful for the im-
provement of the first numerically efficient uncon-
strained minimization algorithms. The topological
characteristics of many other toy problems (espe-
cially many-variable ones) are less known. Of course,
the number of possible toy problems is unlimited and
their internal classification is very hard. It is easy to
define even one-dimensional toy problems that are
almost impossible to solve, except using exhaustive
enumeration of floating point numbers. The advan-
tage of toy problems is that they are easy to manip-
ulate, simplify or complicate in the process of algo-
rithmic invention.

Real-life problems come from some external ap-
plication. Physics, Chemistry, Engineering, Biology,
FEconomy and Industry are the most common sources
of applied optimization problems. From a pragmatic
point of view, the goal of an optimization algorithm
is to solve as many real-life problems as possible, or,
perhaps, to solve an important subclass of real-life
problems in a very efficient way. Unlike toy prob-
lems, real-life problems are not easily available (for
example, they may depend of a huge amount of data)
and are difficult to manipulate.
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Strictly speaking, the Geometric ProblemsE] re-
viewed in this paper are toy problems in the sense
that they are not necessarily connected to a specific
application. However, they have a clear geometrical
meaning and, because of this meaning, they resem-
ble realistic applications. Their main characteristics
may be summarized as follows:

e As many other toy problems and even real-
life problems, Geometric Problems are variable-
dimensional in several senses. The number of
variables and constraints vary according to the
dimension of the underlying space, number of
“objects” considered and other problem param-
eters.

e The problems usually have many local minimiz-
ers. Finding the global minimum, or a suitable
local minimum is a challenging motivation for
NLP solvers.

e Geometric Problems are easy to code. Their
derivatives are not hard to compute. They do
not depend on a huge amount of data.

e Geometric Problems usually admit several Non-
linear Programming formulations.

e Failure or success in the solution of geometric
problems always has a graphical spatial inter-
pretation. This interpretation provides power-
ful hints for the improvement of algorithms.

Last, but not least, many people experiment an
aesthetic pleasure in solving geometric problems,
that surpass the obvious satisfaction of minimizing
Rosenbrock’s function up to high precisions. Al-
though this feeling adds nothing to the relevance of
the activity, it constitutes a powerful motivation for
practical research. As visual animals, we are geneti-
cally trained to experiment joyfulness in the presence
of spatial elegance and harmony.

2. Hard-Spheres

Hard-Spheres is the problem of finding n, points on
the unitary sphere of IR™ in such a way that the

2In this article we use the word “Geometric” in its naive
sense. We do not mean to address “Geometric Programming”
problems with their specific posynomial optimization mean-
ing.
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minimal pairwise distance is maximal [9]. Using that

lpi — i3 = 2 — 2(pi, p;) when [Ipill2 = |Ipjll2 = 1,
this problem may be formulated as follows [13]:

Minimize =z
subject to

z > (pi,p;) forall i j,
lpel> =1 forall k=1,... M-
See Figure 1.

Figure 1: Figure 1: Hard-Spheres ng = 3,n, = 24.

Hard-Spheres has an immediate relation with the
famous Kissing Problem [9]. Assume that a feasible
solution of Hard-spheres (as formulated above) exists
such that the objective function value is less than or
equal to 0.5. Then, the maximal pairwise distance
is not bigger than 1. This means that one can place
n, non-overlapping solid balls of radius 1/2 touch-
ing a given central ball with radius 1/2. The Kissing
Number associated with ng is precisely the maximum
number of balls of radius R that can be placed touch-
ing a central ball of the same radius. Therefore, if,
at a solution of Hard-Spheres, the objective func-
tion value is not greater than 0.5, the Kissing Num-
ber of ng is not smaller than n,. In other words,
if we were able to solve all Hard-Spheres problems,
all Kissing Problems would be solved too. However,
most instances of the Kissing Problem remain open.
Clever Semidefinite Programming relaxations have
been used for finding Kissing Number bounds [24].

Several different mathematical programming formu-
lations of this problem may be found in [I4] and
references therein.

The number of inequality constraints of Hard-
Spheres grows quadratically with n,. Therefore, this
number is potentially huge and the number of vari-
ables is also huge if one chooses to replace inequality
constraints of type g;(z) < 0 by g;(z)+2; =0,z > 0,
as many NLP solvers do. As a consequence, the
problem represents a challenging probation for the
ability of solvers to find global minimizers of large-
scale problems.

3. Maps
Assume that, for all j = 1,...,n., I'; is an n; —uple
of integers between 1 and m and n; > 3 for all j. Let
Bj > 0forall j =1,...,n.. We wish to find points
P1,--.,pm € IR? such that the area enclosed by the
points p;,¢ € I';j is close to §j, for all j =1,...,ne.
Let us be more precise. Suppose that the points
pi,i € I'jare (v1,y1), ..., (Tn;,Yn;). Then, the “area
enclosed” by this points is defined by

n;—1

1
Area; = 5 (y1%n; —T1Yn;) + Z (Yit1%i —Tiv1Yi) |-
i=1
If (1,91), -+, (Tn;,Yn,) are the consecutive vertices

of a simple polygon this formula defines the poly-
gon area. Therefore, this problem is a 2D version
of the Multidimensional Scaling problem, where one
wants to find points that realise a set of measured
distances.

If a set of probable localizations p1, ..., p;y of the
points p1,...,pm is given, the problem may be for-
mulated as:

m
Minimize Z lpi — bill3
i—1

subject to
099,8J < Areaj < 101ﬁj,j = 1, ey Ne.

This formulation has been used to draw a rough
map of America where the areas of the countries are
close to the true areas but many other toy problems
may be defined and are instructive. In the America
problem we used n, = 17 (number of countries), m =



132 (number of points). The “desired localizations”
P1,...,P132 were given by the coordinates of points
in a standard map of America. Each set I'; defined
the indices of the points that belong to the boundary
of each country. The difficulty of the problem is, of
course, in the fact that the same point may belong
to different boundaries.
The solution is given in Figure 2.

o,

i

Figure 2: Map of America with true areas.

4. Location

We wish to find the point in a given rectangle that
minimizes the sum of distances to a set of given
polygons (polygons or circles). In addition we im-
pose that neither the selected point nor the points
that realise the individual distances in the polygons
can belong to a given ellipse. Figure 3 describes the
problem and gives the solution for a small case.
The unknowns of this problem are py (the point
in the rectangle) and p1,. .., Pppoi, the points in the
polygons that realise the distances. The polygons
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Figure 3: Location problem with 11 polygons.

are described by linear inequality constraints. The
ellipse defines ny, + 1 nonconvex inequality con-
straints.

This problem possesses a structural peculiarity
that favors its resolution by means of projection
methods, especially in the large-scale case. Project-
ing a point x = (po,p1,...,Pnpot) on the feasible
region (excluding the constraints defined by the el-
lipse) is very simple. Taking advantage of this fact,
it is possible to solve problems of this type with ex-
tremely large dimensions [11 [5].

5. Enclosing sets

We wish to find the smallest-volume set of a given
class C that encloses n, given points in IR"¢. The
case in which C is the family of ellipsoids has been
studied by Todd [23], who gave complete results
characterizing global minimizers. Figure 4 shows
the solution of a problem in which the points are
the atoms of a protein and the ellipsoid is centered
in the origin of IR3.

Figure 4: Enclosing ellipsoid.

Representing the ellipsoid as the set of points that
verify (z —a)" H(xz —a) < 1, we see that the problem
above has ng(ng + 1)/2 + ng unknowns (the coeffi-
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cients of the symmetric positive definite Hessian H
and the entries of the center a). The constraints are
of the form

(pi —a)TH(p; —a) <1, foralli=1,...,n,.

The volume of the ellipsoid is proportional to
1/det(H). Therefore, writing H = LLT (L lower-
triangular with non-negative diagonal), the prob-
lem of minimizing the area reduces to maximize
>oid log(¢;;) and the constraints are

(pi —a)"LLT (p; —a) <1, forall i = 1,...,n,

with the obvious bounds ¢;; > 0 foralli =1,...,ng.

In this way, the problem results in an interesting
variable-dimension Nonlinear Programming test.

However, the interesting case is when there does
not exist a close formula for the volume of the sets in
the class C. Assume, for example, that the elements
of C are intersections of two ellipsoids (Figure 5).
Therefore, the constraints of the NLP problem will
be:

(pi—a1)" Hi(pi—a1) <1, (pi—a2)" Ho(p; —az) < 1,

foralli=1,...,n.

Figure 5: Minimal-area intersection of 2 ellipses en-
closing 10 given points.

The unknowns of the problem are the coefficients
of H1 and H» and the centers a1, as € IR™. Writing
H; and Hj in factorized form we can guarantee that
these matrices are positive semidefinite.

The complication is that the volume of the inter-
section of two ellipsoids cannot be computed ana-
lytically, except in particular cases. Therefore, it
must be computed approximately using some simu-
lation procedure. As a consequence, the derivatives
are not available and the problem can only be solved
using a derivative-free technique. Because of these

facts, this type of problems generate many inter-
esting tests for Derivative-Free Nonlinear Program-
ming. Of course, there exist many realistic problems
where derivatives are not available, but they usu-
ally depend on complicate models, black-box rou-
tines and data availability. Therefore, derivative-
free methods are many times tested using problems
in which derivatives are available (but not used)
and noise is artificially simulated. In the objective
functions of the geometric problems presented here,
the derivatives are really not-available but testing
and coding is not hard. Moreover, since simulation
is usually costly, the problems also evoke the fact
that, in real-life non-derivative problems, functions
coming from models are hard to compute. Finally,
volumes computed by simulation may be naturally
noisy and smoothness is not guaranteed [10} 20].

Figure 6 shows a case where the class C is formed
by the intersections between an ellipse and a rectan-
gle.

Figure 6: Minimal-area intersection of rectangle and
ellipse containing 10 given points.

In Figure 7 a slightly different situation is shown.
The sets in C are unions of two ellipses. Observe
that constraints of the form

(z—a))THy(z—ay) <1or (z—ap) Hy(z—az) < 1
may be written as

min{(z —a))THy(z — a1), (x — a2)T Ho(z —as)} < 1.

6. Sentinels

An informal description of the concept of sentinels [4]
is the following: Suppose that A and B are two iden-
tical “solid bodies”. For example, A and B may be
two rectangles with the same dimensions without a
fixed position. Let Py,..., P,, be a set of points in



Figure 7: Minimal-area union of two ellipses enclos-
ing 10 given points.

A and Q1,...,Qn, be a set of points in B. We say
that Py,...P,, and Q1,...,Qny are Sentinels if the
fact that A and B “overlap” implies that a point P;
overlaps B, or a point Q; overlaps A [4]. Therefore,
if the objects A and B are not superimposed, no
sentinel of A invades B and no sentinel of B invades
A.

In general, the determination of the minimum
number of sentinels related to solid bodies is not
simple. In Figure 8 the minimal set of sentinels cor-
responding to identical rectangles is shown [4].

=3 8=3/2 — =T §=1/4

o
o o Q9 -] a o L] El ]

Figure 8: Minimal sets of rectangle sentinels.

Assume now that one wants to place n, identical
convex polyhedra in a region R C IR"™ defined by
convex inequalities gi(z) < 0,...,gp(z) < 0. The
fact that the polyhedra must be contained in R is
represented saying that each polyhedron vertex sat-
isfies g;(xz) < 0,0 =1,...,p.

Assume, moreover, that a suitable arrangement of
sentinels is known. The non-overlapping condition
says that, for each sentinel s of the polyhedron F;,
and for all j # 7, one has s is not interior to P;.

The unknowns of the problem are the translation
vector and the rotation angles that, for each polyhe-
dron P;, define its position within R. Vertices and
sentinels are, in fact, functions of translations and
angles.

Several different objective functions can be pro-
posed. If the region R is not fixed, but depends of
some variable parameters, we may minimize some
geometrical quantity that also depends of these pa-
rameters (length, width, area, etc.). Figure 9 shows
a case in which 30 rectangles were packed in the in-
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Figure 9: Packing rectangles by means of the
Method of Sentinels.

tersection of a triangle and a circle using the method
of sentinels [4].

7. Packing balls

Figure 10 shows a putative solution of the prob-
lem of finding the minimal-size tetrahedron that en-
closes 50 balls of radius 1, and 50 balls of radii
1.025,1.050, . ..,2.250. The edge of this tetrahedron
27.33 [7]. The unknowns of the problem are
the centers p1, ..., Pnpairs Of the balls (npgs = 100 in
Figure 10). The constraints that say that the balls
do not overlap are:

is ~

(2)

where rp is the given radius of the ball k, for k =
L. oo, Nbails-

The constraints that say that the balls are en-
closed in the tetrahedron are represented in [7] as:

Hpi —ij% > (7‘2' + 7’]‘)2 for all 7 < Js

2v2p} — 2v/6p! + 2p; < V6L — 61,
2v2p? + 2V6pY + 2p7 < V6L — 61y,

—2V2pF +pF +71; <0,
p; >0,

for all i = 1, npgys, where the 3D coordinates of p; are
represented (p?, pY,p?) and L is the edge size. The
problem is to minimize L subject to these constraints
and the constraints (2)).

As in the other problems described in this arti-
cle, there is no guarantee that the exhibited solution
is a global one. The solution was obtained using a
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“local” optimization algorithm coupled with a mul-
tistart procedure. The output examination shows
that there are many local minimizers and, probably,
non-minimum stationary points.

Figure 10: Minimal tetrahedron enclosing 100 given
balls.

PACKMOL

PACKMOL is a computational package for
placing molecules in a given domain in
such a way that overlap is minimized [16]
(http://www.ime.unicamp.br/ martinez/
packmol.) It is used in the context of Molecu-
lar Dynamics to find initial configurations for which
the starting energy is moderate. Figure 11 shows
typical solutions obtained by PACKMOL that
have been successfully used in further Molecular
Dynamics (MD) computations.

PACKMOL solves a real-life applied problem.
Real data regarding its use depend on the partic-
ular MD application and, so, to use PACKMOL for
regular NLP tests is not straightforward.

However, a simple geometric problem lies be-
hind the PACKMOL philosophy. Assume that the
molecules to be packed are Mi,..., Mymo. Each
molecule M; may be thought as a set of points
(atoms) in IR3, say, M; = {pt, ... ,p;(i)}.

The unknowns of the problem are the rigid dis-
placements D1, ..., Dyme- Under the rigid displace-
ment D;, the molecule M; goes from its original
position to D;(M;) = {Di(pll),...,Di(p:Z(i))}. A

8.

Figure 11: (a) Protein solvated by water and ions,
containing 53 thousand atoms (~100 thousand vari-
ables) [17]. (b) Interface between water and carbon
tetrachloride [18]. (c) Molecule in interface of water
and zirconia [19]. (d) Double-layered vesicle with
water inside and outside (70 thousands atoms).

rigid displacement is represented in PACKMOL by a
translation vector and three rotation (Euler) angles.
The displaced molecules must be contained in the
selected set B, according to the MD requirements.

Therefore, it may be thought that the original
problem is to maximize the minimal distance be-
tween Dz(p;) and Dy(pf) (i # £) subject to

(i), (3)

In other words, one wishes to maximize z subject to
the constraints and

2 < ||Di(ph) — De(p})|13, i # €.

Di(ph) € Byi=1,... .o, j=1,...

(4)

9. Solving the problems

Most problems mentioned in this article share a
common characteristic. They possess, potentially, a
large number of inequality constraints, most of which
tend to be inactive at the solution. Efficient NLP al-
gorithms for solving the problems should take into
account this feature. On one hand, algebraic manip-
ulation of this type of constraints or their derivatives
is, generally, a waste of time. On the other hand, it
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is convenient to avoid even the computation of con-
straints that are predictably inactive, without im-
pairing the convergence properties of the algorithm.
In many geometrically structured problems, the sec-
ond objective is not hard to achieve: Inactive con-
straints are usually associated with the position of
two points in the space. Briefly, if the points are dis-
tant, the corresponding constraint is inactive. Un-
fortunately, the evaluation of all pairwise distances
may be very expensive. The remedy is to employ
a previous classification of the points in boxes, in
such a way that only points belonging to neighbor-
ing boxes may define constraints that deserve to be
computed. In this way, roughly speaking, the com-
puter time of evaluating all the constraint informa-
tion ceases to be a quadratic function of the num-
ber of points and, under reasonable assumptions, is
linear. This procedure, closely connected with the
linked-cell strategies used in Molecular Dynamics
[12], is used in the web-available version of PACK-
MOL and turns out to be crucial for the practicality
of the method.

The former considerations lead one to revisit
the Powell-Hestenes-Rockafellar (PHR) version of
the Augmented Lagrangian method [Il, 8, 15, 211
22]. PHR algorithms rely on the iterative approx-
imate minimization of the Augmented Lagrangian
Ly(x, A, ) defined by

Lp(.l‘, )\7 :u)

(e []

on a simple set Q@ C IR". Details are given in [1],
where the ALGENCAN method, that uses GEN-
CAN [3] as box-constrained solver, is described and
its theoretical properties are proved. If, at the cur-
rent point x, one has that g;(x) < —pu;/p, then no
calculation related to g; is needed. The absence of
slack variables to complete the constraints g;(z) <0
causes second derivative discontinuity, a cost that
seems to be affordable in the problems under con-
sideration.

— 1)+ 5|+ 2

Augmented Lagrangian methods are not believed
to be competitive with modern Interior Point meth-
ods that use Sequential Quadratic Programming and
— many times — filters [I1] for many problems avail-
able in the literature on practical optimization. The
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main reason is that their final speed of convergence
is rather slow (generally linear instead of superlinear
and quadratic). However, in problems with many in-
active inequality constraints and problems with very
poor KKT-matrix structure, the PHR Augmented
Lagrangian method is an interesting alternative.

For generating the initial approximation, the polar
representation of the sphere was employed. Taking
Ngrid = 3, Np points in the unitary sphere of IR™?
were generated in the following way:

1. Compute 2 X ng,;q equally spaced “angles” ¢ €
[0,27]. For i = 2,...,n4 — 1, compute ngpiq
equally spaced angles in p; € [—7/2+6/2,7/2—
d/2], where § = 7/ngpiq.

2. For defining the initial approximation, compute
n, points in the unitary sphere. Each point pF
is generated taking:

plf = cos(p1) x cos(pz) X -+ X cos(Pny—1),

p? = Sin((pi,l) X COS(QDi) X X COS(‘Pndfl)a

fori=2,...,ng—1,

prd = Sin(s@ndfl),

for all the combinations of angles so far defined.
Therefore, n, = 2 x nZTdi;ll. The initial approx-
imation z° was formed by p',...,p" followed
by the variable z = 22, ,. The initial z was

taken as the maximum scalar product (p’,p’)
for ¢ # j.

The selected problems are defined by ng = 3 and
Ngrid = 7,8,9. Therefore, n, = 98,128, 162.

The dimensional characteristics of the selected
Hard-Spheres problems are:

e Hard-Spheres (3, 98): n; = 3, n, = 98,
n without slacks: 295, n with slacks: 5048,
number of equality constraints: 98, number of
inequality constraints: 4753, total number of
constraints: 4851.

e Hard-Spheres (3, 128): n4y = 3, n, = 128,
n without slacks: 385, n with slacks: 8513,
number of equality constraints: 128, number of
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inequality constraints: 8128, total number of
constraints: 8256.

e Hard-Spheres (3,162): ng = 3, n, = 162,
n without slacks: 487, n with slacks: 13528,
number of equality constraints: 162, number of
inequality constraints: 13041, total number of
constraints: 13203.

The column “Infeasibility” of Table 1 reports the
final sup-norm of constraint violations, f is the final
objective function value and “k” is the number of
iterations.

Table 1 illustrates the efficiency of the PHR ap-
proach when the number of inequality constraints
is large. These examples should not be used to
make efficiency or reliability claims regarding prob-
lems where the many-inequalities characteristic is
not present.

Problem | Infeasibility Final f k Time
(3,98) | 3.5057E-10 | 9.3273E-01 | 8 | 8.17
(3,128) | 3.7860E-11 | 9.4825E-01 | 10 | 25.94
(3, 162) | 3.7424E-11 | 9.5889E-01 | 10 | 40.15

Table 1: Three Hard-Spheres problems.

10. Conclusion

In “The Analytical Language of John Wilkins”,
Jorge Luis Borges describes a Chinese Encyclopedia
in which animals are divided into:

those that belong to the Emperor,

embalmed ones,

those that are trained,

suckling pigs,

mermaids,

fabulous ones,

stray dogs,

those included in the present classification,
those that tremble as if they were mad,

. innumerable ones,

. those drawn with a very fine camelhair brush,
. others,

. those that have just broken a flower vase,

. those that from a long way off look like flies.

© 0N oUW
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The obvious difficulties in classifying nonconvex
optimization problems leads one to evoke Borges’
animal taxonomy. Many times, as practical optimiz-
ers, we discover ourselves talking about “problems
belonging to the Cute Collection”, “problems with
more than 10000 variables”, “nonlinear least-squares
problems”, “problems coming from Chemical Engi-
neering” and so on. A rigorous, complete, clear and
useful classification seems to be impossible, even if
one is restricted to “practical problems” (which, in
fact, is also a dubious category). The “geometric
problems” commented in this article are candidates
to constitute a “class” of optimization problems, at
least in the sense of Borges. As “the animals that
have just broken a flower vase”, they have a number
of features in common but none of these features
appear exclusively in problems of this class. On the
other hand, different problems in the geometric class
may be very simple or extremely difficult and may
differ in a good number of characteristics. Perhaps,
the most useful denomination for this class is: Prob-
lems for which a nice picture can be drawn. Nev-
ertheless, the presence of geometrical characteristics
to which optimality can be associated represents a
powerful stimulus for the development of algorithmic
ideas.
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MRI (magnetic resonance imaging) is a widely
used medical imaging modality that creates an image
from scanned data that are essentially the Fourier
coefficients of this image. A typical abdominal scan
may take around 90 minutes. Can we reduce this
time to 30 minutes by using one third of the Fourier
coefficients, while maintaining image quality? In this
article, we hope to convince the reader that such re-
ductions are achievable through a new and promis-
ing approach called compressive sensing (or com-
pressed sensing). The main computational engine
that drives compressive sensing is ¢;-related mini-
mization algorithms.

1. Introduction

Exploiting sparsity is a common task in computa-
tional sciences, as it is in signal processing. Recently,
sparsity has been skillfully utilized to increase data
acquisition capacity in a new approach called com-
pressive sensing. Seminal contributions in this area
include Candés and Tao [3] and Donoho [1I]. In a
nutshell, this technique encodes a sparse signal into a
shorter “code” whose length is roughly proportional
to the sparsity level rather than the length of the
signal. The decoding process, on the other hand,
involves solving an optimization problem. This is
very different from the traditional paradigm where
a full-length code is first acquired, then compressed,
and the decoding process is relatively inexpensive.
This paradigm shift can potentially bring great ben-
efits to certain applications. However, solving large-
scale optimization problems arising from compres-
sive sensing poses real challenges.

1.1 A synthetic example

Let us try to acquire a sparse signal Z € R" of length
n = 200 depicted in Figure [[(a). Let k = ||Z[|y be
the number of nonzeros in Z, which is 10. First, &
is encoded into a “compressed code” b = Rx € R™,
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m < n, by a linear transform R. Typically in signal
acquisition practice, such encoding is not calculated
on a computer but obtained by certain physical or
digital means. Notice that since T is “unknown” at
this time, R can only be constructed independently
(non-adaptively) of Z. In this synthetic example, we
let R € R™*" be formed from a subset of m = 80
rows of the n-dimensional discrete cosine transform
(DCT) matrix ®. The number m is called the sam-
ple size. @z and RZT are depicted in Figures[I|b) and
(c) where those in ®Z but not in Rz, i.e., the miss-
ing measurements, are replaced with zeros in (c).
After the compressed code b = RZ is acquired by
a sensor and becomes available, we need to decode
it to recover the original signal. That is where op-
timization enters the picture. Although the linear
equations Rx = b have an infinite number of solu-
tions because m < n, one may use the fact that the
number of nonzeros in Z, ||Z||o, is small and try to
recover T as the solution to the £y-problem:

min {||zlo : Az = b} (1)
for A = R, where the “fg-norm” of x is the num-
ber of nonzeros in x. The solution of will be
T unless there exists another solution to Rx = b
that is equally sparse or sparser than Z (which does
not happen under favorable conditions; see next sec-
tion). However, the ¢y-problem is combinatorial
and generally NP-hard [26]. A much more tractable
alternative is the ¢1-problem (also called basis pur-
suit):

(2)

which is a convex program that always has a solution
whenever Ax = b is consistent. As we will show in
Section 2, problem yields the same solution as
the /y-problem under some mild conditions,

From a different perspective, this is also an exam-
ple of missing data recovery [35]. Given a portion of
data b (Figure[I|(c)) that is known, one can recover
the complete data f (Figure [[[b)) by exploiting the
sparsity of T representing f under a basis @, i.e.,
&z = f. Specifically, solving , for A equal to the
sub-matrix of ® corresponding to b, gives the opti-
mal solution z,p = T so that the original signal is
reconstructed as f = ®xop; (Figure [Ij(e)).

Ideally, we would like to take the smallest number
of measurements possible, that is, m = k = [|Z]|o.

min {|jz]l1 : Az = b},
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Figure 1: Signal recovery from under-sampled measurement. ® is a discrete cosine transform.

However, we must pay a price for not knowing the
locations of the nonzeros in # (there are “n choose k”
possibilities!). It was shown in [3] [4, [30] that, when
R is a certain random matrix, then by solving
for m = O(klog(n/k)) one can recover Z with high
probability. Though larger than k, such an m can be
asymptotically much smaller than n when k < n.

To illustrate this point, we performed similar cal-
culations depicted above for m = 10,11, ..., 80, each
with 100 repetitions of randomly chosen m measure-
ments. The percentages of successful recovery for all
m are plotted in Figure [I(e), which shows that it
is generally safe to have m > 6||z||p = 60 for this
combination of ||Z||g, n, and A.

1.2 Hidden sparsity

If compressive sensing were only applicable to spa-
tially and temporally sparse signals, it would have
few applications. Most images, for example, are not
sparse in the pixel domain, but rather have sparse
representations in either the Fourier (spectral) or
Wavelet (spectral-scale) domain. Let the vector @

represent such an image. A compression algorithm
(e.g. JPEG2000) would find an invertible matrix ®
(e.g., a wavelet basis) such that the vector z = ®u
has a relatively small number of large-magnitude
components. Let Z be the sparse vector formed by
taking only the large-magnitude components of Z.
Then, @ can be accurately approximated by ®~'7.
This is not surprising because the useful information
in most images is relatively sparse compared to pixel
values. Since ®u is sparse, one can recover u from
b = Ru by solving

m&n{H@qu : Ru = b}, (3)
which is equivalent to solving with x = ®u and
A=RoL

Like images, many signals by their nature are
sparse in certain domains. The principle of com-
pressive sensing is that such a signal can be recovered
from a relatively small number of measurements pro-
vided its sparsity is appropriately exploited. How-
ever, a good sparse representation for a given signal
is not always obvious. Recently, some progress has
been made on signals arising from low-light imaging,
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medical imaging (MRI and CT), infra-red sensing,
bio-sensing, radar signal processing, multi-sensor
networks and distributive sensing, and analog-to-
information conversion. The interested reader can
visit the Rice compressive sensing website [6] for a
list of recent papers.

2. When are the /-
problems equivalent?

and /;-

We give an informal proof of the fact that whenever
A is random, Z is sufficiently sparse and b = AZ,
then with high probability  will solve the “basis
pursuit” problem . Following the proof in [34],
we will use a classic result developed by Kashin [21],
and Garnaev and Gluskin [19].

2.1 A sufficient condition for recovery

We first derive a sufficient condition for Z to be the
unique solution of assuming that A € R™*™ has
rank m and m < n. Let ¥ satisfy Ax = b and denote
the null space of A by Null(A4). Since

{r: Az =b} ={z +v:veNul(4d)},
Z uniquely solves if and only if

12 +vlly > [|Z]]1, Vo € Null(A) \ {0} (4)
Let S be the support of Z and Z be its complement,
1.€.,

S:{iii‘i#O}, Z:{’L'Zi'i:(]},

and vg be the sub-vector of v corresponding to the
index set S (we apply similar notation for other vec-
tors). Then we calculate

17 + oll1 125 +vsll1 + 110+ vz

= [zl + vzl = llosll) +
(IZs +vsli = l[Zsll + [lsl) ,

where in the right-hand side we have added and
subtracted the terms ||Z||; and ||vg|1 (noting that
|Z]l1 = ||Zs||1 given that Zz = 0).

In the above identity, the last term in parentheses
is nonnegative by the triangle inequality; hence, ||Z+
vl1 > |||l if ||vz]l1 > ||vs|1. Therefore, a sufficient
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condition for T to be the unique solution of is
that ||vz|l1 > ||lvs|l1, or equivalently |[v][1 > 2||lvg]|1,
for all nonzero v in the null space of A. In view of
the inequality

[oslls < VISlllvsllz < VlIZlollvl2,

where we used the facts that (i) the length of vg is
|S| (the cardinality of the set S) which equals ||z||o,
and (ii) vg is a sub-vector of v, we derive another
sufficient condition that & uniquely solves if

1 flvlh
2]Jvll2’

1Z]jo < Yo € Null(4) \ {0}.  (5)

This condition requires nothing but sparsity of Z
for it to solve uniquely. This uniqueness implies
that there can exist at most one vector z € {x : Az =
b} whose sparsity meets the condition ; otherwise,
it would not be the unique solution of . Such an
Z, whenever it exists, must be the sparsest solution
to Ax = b. In other words, the ¢1- and {o-problems
are equivalent in the sense

z = argmin{||z|; : Az = b}
= argmin{||z||p : Az = b}.

(6)

The remaining question is how restrictive the condi-
tion is? More precisely, how big can the bound
on the right-hand side of be? The answer will,
of course, depend on the properties of matrix A.

2.2 Kashin-Garnaev-Gluskin result

We will make use of a classic result established in
the late 1970’s and early 1980’s by Russian mathe-
maticians. In our context, this result has to do with
the ratio of the ¢1-norm to the ¢5-norm restricted to
a subspace. We know that in the entire space IR",
the ratio can vary from 1 to /n, namely,

L Ll

<10l <+/n, YveR"\{0}.

Here we will only concern ourselves with the lower
bound. Roughly, this ratio is small for sparse vectors
that have many zero or near-zero elements. However,
it turns out that in many subspaces this ratio can
have much larger lower bounds than 1.

As an improvement to an earlier result by Kashin
[21], Garnaev and Gluskin [19] established that for
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any natural number p < n, there exist p-dimensional
subspaces V}, C IR"™ in which

Cyn—p
log(n/(n —p))

where C' is an absolute constant independent of the
dimensions. In other words, these subspaces do not
contain excessively sparse vectors. Moreover, such
subspaces are abundant because every p-dimensional
subspace spanned by iid (independently identically
distributed) random vectors of the standard Gaus-
stan distribution will satisfy inequality @ with high
probability. (This is an instance of a mathematical
phenomenon commonly referred to as concentration
of measure; see [25], for example.)

[l
[oll2

Yo e Vp\ {0}, (7)

2.3 How sparse is enough?

If A is an m by n random matrix with iid standard-
Gaussian entries, then it is known that the null space
of A can be spanned by iid random vectors. In par-
ticular, vectors in the null space of A will satisfy,
with high probability, the Garnaev and Gluskin in-
equality for V, = Null(4) and p = n — m. Com-
bining the sufficient condition with the Garnaev
and Gluskin inequality ([7]), we have the result that
for a random Gaussian matrix A, T will uniquely
solve with high probability whenever

C? m

1Zllo < T Tog(njm)’

(8)
(The constant C' above is the same one from (7).
This result can be interpreted as follows. As long
as the sparsity of a signal T is less than a certain
fraction of the number of random measurements m,
where the value of the fraction only logarithmically
deteriorates as the signal dimension n increases, with
high probability this signal can be recovered from the
random measurements by solving the basis-pursuit
problem .

The sparsity bound given in is the best order
currently available, first established in [3] for Gaus-
sian random matrices, which is a significant improve-
ment upon previously existing bounds. The same
order has been extended to some other random ma-
trices such as Bernoulli matrices whose entries are
+1 [4]. For certain partial orthonormal (for exam-
ple, partial DCT) matrices, a slightly weaker bound

SIAG/OPT Views-and-News

has been proved [30]. Moreover, an in-depth study
on the constant in , C?/4, can be found in [12].

3. Imaging and other applications

To demonstrate the potential benefit of compres-
sive sensing in practical applications, let us simulate
a compressed MRI (Magnetic Resonance Imaging)
experiment using under-sampled measurements (see
[24] for a more realistic work).

3.1 Compressed MRI simulation

First, we need an abridged overview of MRI — a
non-invasive and safe medical imaging technique. In
MRI, images are obtained in the form of the fre-
quency response of tissues. First, a strong magnetic
field and an RF (radio frequency) pulse are directed
to a section of the anatomy, causing the protons in
that area to be “excited”: they get aligned along the
magnetic direction and spin with a certain frequency.
Next, on turning off the RF pulse, the protons return
to their natural, rather chaotic, state while releasing
RF signals that are captured by external coils in the
form of phases and magnitudes at selected frequen-
cies. In other words, the image of spatial energy
(or density), denoted by u, is constructed from data
acquired in the frequency domain, the so-called k-
space. Roughly, at a given resolution, a complete set
of sampled frequencies is f = Fu where F is a dis-
crete Fourier transform. Therefore, an image can be
constructed through a Fourier inversion @ = F~!f.

An MRI scan can be a long and uncomfortable
process. For example, a patient must repeatedly
hold his/her breath during an abdominal scan while
strictly immobilized throughout the process, which
can last 1 to 2 hours. Potentially, compressive sens-
ing can help construct w with a much smaller num-
ber of sample frequencies. This would mean that the
MRI scan duration could be significantly reduced.

MR images often have sparse representations
under some wavelet transform ®. By solving
min, {||Pu|; : Ru = b} or its variants, we can obtain
a given image # from an under-sampled frequency
set b = Ru, where R represents a partial discrete
Fourier transform.

Let us simulate this approach to see how much
compressive sensing could help. Figure (a) depicts
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(b) 39% sampling,
SNR=32.2

(d) 14% sampling,
SNR=15.8

(c) 22% sampling,
SNR=21.4

Figure 2: (a) Original Image; (b)-(d) Pelvis MR im-
ages recovered from incomplete measurements us-
ing the wavelet-based model @ (where the higher
the SNR (signal-noise ratio) is, the better the image
quality is).

a clean 256 x 256 pelvis MR image that is our u. We
tried the use of 39%, 22%, and 14% of its Fourier co-
efficients to reconstruct the image, simulating three
different levels of under-sampling. Since in MR
imaging, one has some freedom in selecting sample
frequencies (however, practical constraints do exist),
the reconstruction results were obtained by random
sampling with a strong bias towards lower frequen-
cies. The images in Figure [2{b)—(d) were obtained
by solving the model

min |[Sul + | Ru — b|, (9)

with a Haar-wavelet transform & and a large p.
From a visual examination, it seems that using one
third of measurements, if properly chosen, would be
quite sufficient for obtaining a high-quality image for
this case.
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(a) Shepp-Logan phantom

(b) 22 radial lines

Figure 3: Fourier samples taken at the frequencies on
the 22 radial lines (b) are sufficient to exactly recover
Shepp-Logan phantom (a) using total variation.

3.2 Total variation

Many natural images possess a “blocky” structure.
For such images, minimizing the total variation (cf.
[36]) yields a better image quality [3I]. For a 2D
digital image wu, the total variation of u, T'V (u), is
defined as the sum of Euclidean norms of local fi-
nite differences, i.e., TV (u) = 3_, ; [|(Du);j]|2, where
(Du);; represents a first-order finite difference vec-
tor of uw at pixel (4,7). Since TV (u) is the ¢;-norm
of “gradient magnitude”, minimizing 7'V (u) tends to
yield a solution with sparse finite differences, namely
an image with constant-intensity blocks. Therefore,
total-variation regularization has been widely used
in image processing tasks such as noise removal, de-
blurring, edge detection, etc.. A similar argument
can be used to justify the use of higher-order finite
differences to regularize images of appropriate char-
acteristics.

In [2], Candés and Romberg demonstrated that,
by minimizing the total-variation, the Shepp-Logan
phantom in Figure [3[a) can be almost exactly recov-
ered from Fourier samples taken on 22 radial lines
depicted in Figure 3|(b).

Since finite difference operators are not invertible,
minimizing total variation cannot be directly trans-
formed into a problem of the form . This poses a
major algorithmic challenge.

3.3 Broad applications

There are other potential applications of compres-
sive sensing besides MRI, especially in areas where
signal acquisitions are relatively expensive and time-
consuming. For example, an infrared sensor is over a
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hundred times more expensive than an image sensor
of the same resolution in a consumer digital cam-
era. In a CT (computed tomography) scan, a series
of two-dimensional X-rays are used to construct a
three-dimensional image, but a long exposure to the
radiation from X-rays can be dangerous. In wireless
sensor networks for collecting physical or environ-
mental measurements, a large number of spatially
distributed sensors acquire and transmit a deluge of
data, relying on low capacity batteries. In all of
these examples, physical hardware capacities are be-
ing stressed, and improving their sensing resolution
or speed is expensive. Compressive sensing offers an
invaluable alternative to expensive physical improve-
ments by using much cheaper computing power after
data collection. Some recent explorations and appli-
cations of compressive sensing can be found at the
Rice compressive sensing website [6].

4. Algorithms

Let us turn to optimization, the ultimate tool for ob-
taining a sparse signal (or its sparse representation)
from under-sampled measurements.

4.1 Formulations and challenges

Let J(z) be a convex, sparsity-promoting function,
such as the ¢1-norm or the total variation. To recover
a sparse signal representation T from measurements
b~ AZ, we can either solve

rr;in{J(:c) : Az = b}, (10)

when b is relatively accurate, or solve

min{J(z) : H(Ax,b) < €} (11)
T

when b is more noisy, where H is a measure of the

closeness of Az to b. For an appropriate penalty pa-

rameter p (which can be found by a noise-statistics

computation, cross validation, or simply trial and

error), is equivalent to

min J(x) + pH(Az,b) (12)
T

for some g > 0. The most common choices of J and

H are, respectively, J(z) = ||z|1 and H(Ax,b) =
3|Az — b)3. In Statistics, minimizing this H sub-

ject to [|z]1 < 0 is the so-called LASSO problem.
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More generally, the regularization term J(z) can be
a mixture of multiple terms representing multiple
features of a sparse solution. For example, a signal
may possess a piece-wise constant feature and have
a sparse representation under a certain transform ®
at the same time. In this case, we may use a mixed
regularization term:

J(x) =TV (u) + A||Px||;.

Similarly, the fidelity-measure function H(x) could
also consist of multiple terms.

All these problems are non-smooth convex opti-
mization problems that can be easily transformed
into smooth problems with convex constraints. How-
ever, algorithmic challenges arise from the facts that
(i) real-world application problems are invariably
large-scale (an image of 1024 x 1024 resolution leads
to over a million variables); (ii) the data matrices in-
volved are generally dense; and (iii) real-time or near
real-time processing is often required (as in MRI).
For these problems, conventional algorithms requir-
ing matrix factorizations are generally not effective
or even applicable.

On the other hand, when A is a partial trans-
form matrix, fast matrix-vector multiplications are
often available. Moreover, the sparsity in solu-
tions presents unusual opportunities to achieve rela-
tively fast convergence with first-order methods (i.e.,
methods of gradient-descent type that do not solve
linear systems during iterations). These features
make the development of efficient optimization al-
gorithms for compressive sensing applications an in-
teresting research area.

4.2 Some recent algorithms

We mention a few algorithms recently developed
for solving large-scale compressive sensing problems,
fully realizing that any such list would be unavoid-
ably incomplete. In addition to those briefly re-
viewed below, there are many other algorithms based
upon ideas such as minimizing a non-convex /-
“quasi-norm” for p < 1, iteratively weighted least
squares, group testing, homotopy methods in statis-
tics, combinatorial methods, and ¢;-Bregman iter-
We again refer the reader to the Rice CS
resource website [6] for more comprehensive lists of
algorithmic papers and software.

ations.
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Orthogonal Matching Pursuit (OMP) based meth-
ods (e.g., [32, 13 [7]) do not solve (2) per se, but use
an iterative greedy approach to identify nonzero (or
large-magnitude) components of = so that the resid-
ual b — Az is minimized in some sense while keeping
other components of x at zero. The recent algorithm
StOMP [I3] is a good representative of such greedy
algorithms that can perform well on problems with
highly sparse solutions and noiseless measurements.

A recent code called ¢; ¢ [22] is based on an
interior-point algorithm that uses a preconditioned
conjugate gradient (PCG) method to approximately
solve linear systems in a truncated-Newton frame-
work. The authors exploit the structure of the Hes-
sian to construct their preconditioner. Their com-
putational results show that about a hundred PCG
steps are sufficient for obtaining accurate MRI im-
ages in the compressive sensing framework. Though
generally slower than first-order methods, this algo-
rithm may offer a certain advantage on problems of
less sparsity where first-order methods could poten-
tially encounter slow convergence.

The recent method GPSR [I§], which stands for
gradient projection for sparse reconstruction, refor-
mulates the unconstrained version of into
a quadratic program with nonnegativity constraints
and applies a projected gradient algorithm, with op-
tional Barzilai-Borwein steps and a non-monotone
line search. Although motivated from very different
viewpoints, this algorithm has a certain similarity
with shrinkage methods introduced below; however,
their performance can be quite different on some
problems.

SPGL1 [33] is a recent code for solving a sequence
of problems of the form

mxin |Az = b||, s.t. [|z]1 < A, (13)
for A=A, A9, .. = X until reaching the desired
value X. The choice of X is based on a root finding
algorithm (e.g., Newton’s method) using two results:
(i) the curve formed by the minimizers xop¢(A) is
convex and continuously differentiable in A, (ii) the
dual solution of gives the gradient of the curve
at A.

Recently, a general method was proposed in [27]
for minimizing J(x)+ H(z), where J is non-smooth,
H is smooth, and both are convex. It is required
that J be “simple” so that there exists a closed-form
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solution to minimizing J plus some auxiliary func-
tions. The ¢;-norm is such a “simple” function since
the problem min, A||z|1 + || — y||3 has the closed-
form solution shrink(y, A), which is defined in
below. When H has Lipschitz continuous gradients,
the objective value in this method converges at a
rate O(k~2), where k is the iteration number. This
result shows that in general, minimizing the sum of
J and H is not harder than minimizing the smooth
function H alone as long as J is “simple”.

A widely used method for solving ¢;-minimization
problems of the form

min pf|ul[s + H(u), (14)
for a convex and differentiable H, is an iterative pro-
cedure based on shrinkage (also called soft threshold-
ing; see below). In the context of solving
with a quadratic H, this method was independently
proposed and analyzed in [17) 28], 10} [I], and then
further studied or extended in [14] 15, 9, [5, 20} §]. It
turns out that this algorithm can be directly derived
from the classic forward-backward operator split-
ting technique (c.f. [23]). The basic shrinkage al-
gorithm can be written as the fixed-point iteration:
fori=1,...,n,

ul ™ = shrink((u* — 7V H (uF));, pr), (15)
where 7 > 0 serves as a step-length for gradient de-
scent (which may vary with k) and
shrink(t, @) = ¢ — Projj_q 4)(t) (16)
for any t € R and a > 0. It is easy to see that the
larger p is, the larger the allowable distance between
uFt1l and u*.

A new result in [20] is the finite convergence of the
support and the signs of ©* under a non-degeneracy
condition. That is, sign(u*) = sign(uept) (assum-
ing sign(0) = 0) for all £ > K, where uop; denotes
the solution of (however, an estimate or bound
for K is still unknown). It was also proved in [20)]
that the rate of convergence is g¢-linear under suit-
able conditions on 7 and H, and the rate depends
on the condition of a sub-Hessian, rather than the
entire Hessian, of H at uqp;. These results provide
explanations why sparsity in solutions can help ac-
celerate convergence of first-order methods.
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Various modifications and enhancements have
been proposed to improve the efficiency of the ba-
sic iteration ([15)), including [16], I8]. In our view, the
basic iteration would not be practically effective
without a continuation (or path-following) strategy
[20, B3] in which a gradually decreasing sequence of
pu-values is used to guide the iterates towards the fi-
nal optimal solution. In [20], the performance of a
fixed-point continuation (FPC) algorithm was com-
pared with those of StOMP [13], GPSR [I8] and
0 Ls 22].

In addition, a general block-coordinate gradient
descent method for linearly constrained separable
problems [29] can be applied to solving (14]).

5. Concluding remarks

Compressive sensing is a new, application-driven, in-
terdisciplinary area where optimization can have a
great impact. Given the diversity of applications,
successful algorithms should be able to take full ad-
vantage of problem structure. We have just seen the
beginning of activities in this direction.

Taking advantage of sparsity has always been one
of the central tasks in computational algorithms.
However, it is fair to say that most previous efforts
have been concentrated on sparsity in problem data
rather than sparsity in solutions. How to optimally
exploit solution sparsity certainly deserves closer ex-
aminations in algorithmic studies.

Noise and errors naturally appear in measure-
ments in practical applications. A good algorithm
for compressive sensing should be robust with re-
spect to noise and errors under normal conditions.
Comprehensive and in-depth research in this direc-
tion has yet to be conducted.

Unlike for most other problems, algorithm design-
ers for compressive sensing have some freedom in
selecting problem data. For example, which mea-
surement matrix should we use for a given problem,
a random Gaussian or a partial DCT matrix? Which
frequencies should we sample in MRI? This interac-
tion between problem data, sparse solution and al-
gorithms presents a rich and unique set of research
opportunities. Moreover, if data are acquired over
a period of time, can we develop a “warm-start” al-
gorithm that produces approximate solutions whose
accuracy progressively improves with the increase in

SIAG/OPT Views-and-News

available measurements?

The past few years have seen a burst of activities
using ¢;-related optimization in areas such as statis-
tics, machine learning, signal processing, imaging,
and computer vision. While the gradient-descent
method is probably the most well-known and widely
used tool, researchers in these areas have devel-
oped rich analytical results and efficient computa-
tional tools for solving various fi-related optimiza-
tion problems. Historically, research in optimization
has been stimulated by the demand of engineering
applications, and subsequently contributed to the
practice of these applications. We believe that to-
day we are witnessing the same phenomenon repeat-
ing itself in the area of ¢;-related optimization.
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. duced conference fee as the members of SIMAIL
Bulletin Heed conteren HembEr

Renato Spigler
Organizing Committee SIMAT2008

1. Obituary

We regret to announce the death of I. I. Dikin on
February 28th from a heart attack. Dikin proposed
the affine-scaling interior-point method for linear
and quadratic programming as a student of L. V.
Kantorovitch in 1967, and proved its convergence in
a 1974 paper. The Dikin ellipsoid is a well-known
construct in interior-point methods for linear and
convex programming. Dikin worked at the Siberian
Energy Institute, applying mathematical program-
ming and interior-point methods to energy problems.

Roman Polyak and Michael J. Todd

2. Event Announcements

SIMAI2008
An international conference organized in
cooperation with STAM
May 15-19, 2008
Rome, Italy
http://www.simai.eu

The Ttalian Society for Applied and Industrial
Mathematics (SIMAI) will held its 9th Congress in
Rome, Italy from September 15th to 19th. This in-
ternational event takes place every two years. This
time it is being organized in cooperation with STAM.

The hosting environment will be the beautiful
downtown of Rome. The main (invited) speakers will
be Antonio Ambrosetti (SISSA, Trieste), Douglas N.
Arnold (University of Minnesota, USA), Nicola Bel-
lomo (Politecnico di Torino), Giovanni Ciccotti (Uni-
versita di Roma “La Sapienza”), Nicholas J. Higham
(University of Manchester, UK), and Alfio Quar-
teroni (Politecnico di Milano & EPFL Lausanne).

Besides, there will be a number of minisymposia
(usually several dozens), round tables, prizes to
young mathematicians, and interactions with indus-
trial representatives. More information (in progress)
can be found at the SIMALI site.
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Chairman’s Column

The first thing I would like to do is to thank the
outgoing Chair, Kurt Anstreicher for all his efforts
over the past 3 years on our behalf, and also to
acknowledge the enormous contributions made by
the vice chair, Bob Vanderbei, the program direc-
tor, Sven Leyffer and the secretary/treasurer Kees
Roos. I have quickly learned of the efforts these folk
have put in on our behalf, and I remain grateful for
the very healthy shape in which we find the activity
group.

I am excited about seeing you again at the Op-
timization meeting in Boston. In addition to hear-
ing about your innovative research ideas, I note that
the Optimization prize will be awarded, and that
SIAM promises ‘refreshments’ for those who attend
the Business Meeting! In addition to our standard
business, Steve Vavasis, our new program director,
and I are soliciting ideas for possible locations of the
next STAM Optimization meeting in 2011.

Tom McCormick, our new secretary, is trans-
ferring the web site to a standard location on
SIAM’s web server, and we hope to collect new
content to enhance this service. Please send sug-
gestions directly to him. The new web site is at:
http://siags.siam.org/siagopt /

If you have ideas on new directions or changes that
you believe would benefit our STAG, please let me,
or Yinyu Ye, our new vice chair, know about them.
While these matters may provoke lots of discussion,
are there mechanisms that will help us forge closer
ties to our sister organizations within INFORMS,
MPS and AMS? Suggestions are always welcomed,
but particularly if they come with a promise of vol-
unteered help.

Finally, I would like to thank Luis Vicente for all
his excellent work in preparing our newsletters for
the past 6 years. He has made this a vital part of
our activities and I am pleased to announce that

21

Sven Leyffer has agreed to take over this important
task and serve for the next three years as Newsletter
editor.

Michael C. Ferris, SIAG/OPT Chair
Computer Sciences Department

University of Wisconsin

1210 West Dayton Street, Madison, WI 53706
USA

ferris@cs.wisc.edu
http://www.cs.wisc.edu/ ferris

Comments from the Editor

This issue of SIAM/Optimization Views-and-
News is one of my favorites, even though it contains
two unrelated articles. This is simply because these
articles are extremely interesting, novel and very
nicely written. It is my duty, but also my pleasure,
to thank José Mario Martinez, Wotao Yin and Yin
Zhang for graciously accepting my invitation and, of
course, for having put so much time and effort into
the preparation of their articles.

I have been editing this bulletin since the Fall of
2003. I started when Henry Wolkowicz was chair,
continued under the directorship of Kurt Anstre-
icher, and finish up working with Michael Ferris. 1
always felt from them and from all the other SIAG
officers a strong and resilient support. While I am
pleased to relinquish this post after such a long
tenure as editor, I am happy to leave the bulletin
in the capable hands of Sven Leyffer.

Luis N. Vicente, Editor
Department of Mathematics
University of Coimbra
3001-454 Coimbra

Portugal

Inv@mat.uc.pt
http://www.mat.uc.pt/ 1lnv
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